Do pełnej funkcjonalności strony potrzebujesz włączonej obsługi skryptów. Tu znajdziesz instrukcje, które pozwolą Ci włączyć skrypty w Twojej przeglądarce.
KK-Nano 2022 - abstrakt Agnieszka Kamińska

Wystąpienie ustne Agnieszka Kamińska (BIO-Wt)

Ściągnij plik z abstraktem

SERS COMBINED WITH CHEMOMETRIC ANALYSIS FOR BIOMEDICAL AND AMALYTICAL APPLICATIONS

Agnieszka Kamińska1, Sylwia Berus1, Ariadna B. Nowicka1, Aneta Kowalska1, Tomasz Szymborski1, Izabela Dróżdż2, Maciej Borowiec2, Monika Adamczyk-Popławska3

1 Instytut Chemii Fizycznej, Polska Akademia Nauk, Kasprzaka, 44/52, 01-224 Warsaw, Polska
2 Zakład Genetyki Klinicznej - Uniwersytet Medyczny w Łodzi, Pomorska 251, 92-213 Łódź, Polska
3 i Instytut Mikrobiologii Wydział Biologii - Uniwersytet Warszawski, Miecznikowa 1, 02-096 Warszawa, Polska


Surface–enhanced Raman spectroscopy provides a unique vibrational signature of the scattered molecules. SERS as an ultrasensitive, label-free and non-destructive technique reveals a specific information down to the molecular level and thus will offer valuable information for biological systems analysis and monitoring. SERS spectra/images of biological samples are sensitive to the subtle changes in biochemical composition and molecular structure of the cells including the changes in quality and quantity of proteins, peptides, lipids and/or nucleic acids and metabolites which arise during disease related pathological changes in cells, tissues and organs. Importantly, the results of the SERS measurements can be obtained in few minutes and no additional reagents are needed. This technique is applied in a wide range of practical applications from: proteins, peptides, nucleic acids; forensic materials and drugs, tissues and cells to whole microorganisms. We present its application for detection and identification of pathogenic bacteria from clinical and environmental samples, viruses including SARS-CoV-2, differentiation of cancers cells and tissues or circulating cancer cells from blood. Chemometric analysis of SERS data enables: (i) extract biochemical information from the registered spectra (ii) carry out statistical classification of the analyzed systems (e.g. species, bacterial strains), (iii) identification of the spectrum of an unknown sample by comparing it with a library of known spectra, (iv) determination of "marker bands" which allow the understanding of biochemical processes taking place at the molecular level. Coupling of plasmonic nanostructures with microfluidic systems ensures miniaturization of the developed methods for their further applications.