Do pełnej funkcjonalności strony potrzebujesz włączonej obsługi skryptów. Tu znajdziesz instrukcje, które pozwolą Ci włączyć skrypty w Twojej przeglądarce.
KK-Nano 2022 - abstrakt Christian Joachim

Wystąpienie ustne Christian Joachim (PFC-Czw)

Ściągnij plik z abstraktem

QUANTUM HAMILTONIAN SINGLE MOLECULE LOGIC GATES

Christian Joachim

CEMES, 29 rue Jeanne-Marvig, F-31055 Toulouse Cedex 4, France


Without embedding molecular wire, rectifier, switch, transistor chemical groups in a single molecule and without using qubits along its electronic quantum structure, a Quantum Hamiltonian Computing (QHC) designed molecule-logic gate can calculate in a quantum way with direct classical data inputs [1]. For the inputs, the classical to quantum conversion occurs directly on the molecule chemical board structure using for example the picometer precision of a low temperature scanning tunneling microscope (LT-UHV-STM) to input the classical data using single metal atoms. Also, with an LT-UHV-STM, the atomic scale quantum measurements used along this board to measure the logical output will also be described [2]. The quantum graph for designing QHC gates will be given leading for example to a very simple 6 quantum states QHC Boolean ½ adder gate [3,4]. QHC NAND, NOR and XOR single molecule gates [5,6,7] and a QHC surface NOR/OR atomic scale circuit on Si(100)H [8] have been experimentally demonstrated and more recently a single molecule full digital adder [9]. The advantages and limitations of the QHC quantum control approach in term of calculating power, clock frequency and interconnects will be discussed in comparison with the qubit computing approach [3]

References:

[1]: N. Renaud and C. Joachim, Phys. Rev. A, 78, 062316 (2008)

[2]: O. Faizy, G. Dridi, C. Joachim., Scientific Reports, 6, 30198 (2016)

[3]: G. Dridi, R. Julien, M. Hliwa, C. Joachim, Nanotechnology, 26, 344003 (2015)

[4]: G. Dridi, O. Faizy, C. Joachim, Quantum Science and Technology, 3, 025005 (2018).

[5]: W.H. Soe, and coll. ACS Nano, 5, 1436 (2011).

[6] D. Skidin, and coll. ACS Nano, 12, 1139 (2018).

[7] W.H. Soe, C. Manzano C. Joachim, Chem. Phys. Lett., 478, 137388 (2020)

[8]: M. Kolmer and coll., Nanoscale, 7, 12325 (2015).

[9] W.H. Soe, P. de Mendoza, A.M. Echavarren,, C.Joachim J. Phys. Chem. Lett, 12, 8528 (2021).